CuSn6 HP

HP high performance

Standard Designation

EN CW452K / UNS 51900

Chemical Composition				
Cu	Sn [%]	P [%]		
Balance	6	0.1		

Description / Applications

CuSn6 HP belongs to the copper-tin alloys. CuSn6 HP provides an extraordinary combination of strength and electircal conductivity. CuSn6 HP has elevated bending properties becasue of its fine-grained microstructure.

Applications: connectors, contact pins, springs, stamped pieces, parts in the machine and apparatus construction

Physical Properties ¹⁾				
Density	8.8 g/cm ³	Thermal expansion coefficient	18.5·10 ⁻⁶ /K	
Electrical conductivity	9 m/Ω·mm² 15 % IACS ²⁾	Modulus of elasticity	115 GPa ³⁾	
Thermal conductivity	75 W/m·K			
1) Coddeline and the control of the		3) 1 CD- 1 LN/ 2		

¹⁾ Guideline values for soft temper, measured at room temperature

 $^{^{2)}}$ IACS = International Annealed Copper Standard

Processing information				
Weldability	good	Stress corrosion cracking	none	
Solderability	very good			

Mechanical properties (maximum strip thickness 0.4 mm)								
Temper	Tensile Yield Strength Strength Rm [MPa] Rp0,2 [MI		Elongation A50 [%]	Hardness HV	Bendability ¹⁾			
		Rp0,2 [MPa]			90° r/t ²⁾		180° r/t ²⁾	
					GW ³⁾	BW ⁴⁾	GW ³⁾	BW ⁴⁾
R550	550-650	min. 500	min. 16	170-220	0	0	0.5	1
R670	670-780	min. 660	min. 7	200-260	1	2	2	3.5

¹⁾ The r/t values are valid for a strip thickness up to 0.4 mm (without crack). The data refer to a width of the bending area of 5 mm.

The details in this datasheet are exclusively meant for general information only. They correspond to the state of knowledge at the time of issue and cannot replace the examination by our customers. Liability cannot be derived from the information.

Rev.: 01/2022

 $^{^{3)}}$ 1 GPa = 1 kN/mm²

V-shape bend test according to ISO 7438

 $^{^{2)}}$ r = inner radius, t = thickness $^{3)}$ GW = good way

 $^{^{4)}}$ BW = bad way